Lecture 09
Introduction to Duality




Duality in Linear Programs



Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B < min, f(x)

E.g., consider the following simple LP

min r+y

T,y

subject to x4y > 2
x,y >0

What's a lower bound? Easy, take B = 2

But didn't we get “lucky”?



Try again:

min r + 3y r+y =2

. >
subject to x4+ y > 2 ™ 2y 20
= x+3y>2

z,y >0

Lower bound B = 2



More generally:

min pr + qy

T,y

subject to x +y > 2
r,y >0

the constraint can be equivalently represented as

ar + ay = 2a,
bx >0, a,b,c > 0.
& 2 03 a + b = P
Adding them together, we have that a+c=q
a,b,c >0

(a+b)x + (a+ c)y > 2a. :
=p = q Lower bound B = 2a, for any

a, b, c satisfying above




What's the best we can do? Maximize our lower bound over all

possible a, b, ¢:

min pr + qy

subject to x4+ 1y > 2
z,y >0

Called primal LP

max 2a
a,b,c

subject to a-+b=p

a+c=q
a,b,c >0

Called dual LP



Try another one:

P
P

min pT + qY max 2c—b
T, a,b,c

subject to x>0 subject to a+3c=1p

y <1 :> —b+c=q

3r+y =2 a,b>0

_ Primal LP ) Dual LP

h

v

The constraint of the linear program can be equivalently represented as
ar > 0, a >0,
—by > —b, b > 0.

3cx + cy = 2c, Note: in the dual problem, ¢ is unconstrained

Adding them together, we have

(a+3c)x+ (=b+c)y > —b+ 2c.



Duality for general form LP

GivenceR*" AcR™" pecR™ GeR™*" hecR":

min Lr max — by — oy
T U, U
subject to Az =1 subject to — ATu—GTv = ¢
Gx <h v >0
Primal LP Dual LP

Explanation: for any w and v > 0, and{ primal fea@

ul (Az —b) + 01 (Gz —h) <0, e,

(=ATu — GTv)'e > —b"u — h'w

So if c = —ATu — G'v, we get a bound on primal optimal value



Another perspective on LP duality
for any v and v > 0, and@ primal feasiE

cl'e >cle+u (Az — b) + v (Gz — h) := L(z, u, v)

So if C denotes primal feasible set, f* primal optimal value, then
for any uw and v > 0,

f* > min L(z,u,v) > min L(z,u,v) := g(u,v)
xzeC T

In other words, g(u,v) is a lower bound on f* for any u and v > 0.



b) + v (Gx — h) =

g(u,v) = minclx + u’ (Ax —
X
mm (c+A"u+G"v)'x
linear functlon of x
—bTu — hTy
g(u,v) = .
—00 otherwise

This second explanation reproduces the same dual, but is actually
completely general and applies to arbitrary optimization problems

(even nonconvex ones)

max g(u, v)
u,v

s.t. v=0
\

)

— bTu—htv

ifc=—ATu — GTv

e

max
U,v

subject to

Yy
— ATy —GTy = ¢
v >0

Dual LP
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Lagrangian
Consider general minimization problem
min f(x)
xT

subject to  h;(x) <0, ¢

|
 —
"-.Q
S

(@not be c@ but of course we will pay special attention to

convex case

We define the Lagrangian as

L(x,u,v) = f(x —|—Z’U hi( —i—ZfUJF ()

New variables u € R, v € R", with u > 0 (implicitly, we define
L(x,u,v) = —oo for u < 0)
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Important property: for any v > 0 and v,

f(z) > L(m,u,v)@ch feasible
Why? For feasible z,

L(z,u,v) = f(x)+ Y wihi(z)+ ) vjli(z) < f(a)

e Solid line is f

e Dashed line is h, hence

e Each dotted line shows

of a L(z,u,v) for different
1l | choices of u > 0
—23 5 2 05 1 (From B & V page 217)

feasible set ~ [—0.46, 0.46]
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Lagrange dual function

Let C' denote primal feasible set, f* denote primal optimal value.
Minimizing L(xz,u,v) over all x gives a lower bound:

f* 2 min Liz,w,v) 2 min Liz,wv) = gluw)
zeC T

We call g(u,v) the Lagrange dual function, and it gives a lower
bound on f* for any u > 0 and v, called dual feasible u, v

1.6
wsf Ui
. . . * /._//
e Dashed horizontal line is f o
e Dual variable u e
e Solid line shows g(%) > 12 \
(From B & V page 217) ”
o 02 04 06 08 1
u 13



Example: quadratic program

Consider quadratic program:

, 1
min §JLTQJ& + 'z
I

subject to Az =b, x >0

where () > 0. Lagrangian:

1
L(z,u,v) = §J,TQJL +ele —ula+ vT(A:r: —b)

g(u,v) = minL(x,u,v) = minszQx +(c—u+A"v)T'x —bTv
X X

To compute the dual function g(u,v) = min, L(x,u,v), we minimize the

]
s

Lagrangian above by taking the gradient with respect to x and setting it

equal to zero, and we get that

ot =—-Q c—u+Aw)
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1
glu,v) = Ex*TQx* +(c—u+A"v)'x* = by

¥ =—-Q Me—u+ A"v)
Lagrange dual function:

g(u,v) = min L(xz,u,v) = L(z*, u,v)
I

(c—u+A")"'Q He—u+ATv) = (c—u+AT)T'Q e —u+ ATv) —b'w

DO | =

1
=3 (c—u+AT"'Q ' (c—u+ ATv) —bw

For any uw > 0 and any v, this is lower a bound on primal optimal
value f*
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Same problem

_ 1
min §TTQT +clx
L

subject to Axr =b, x >0

but now ) > 0. Lagrangian:

1
L(x,u,v) = ETTQT +cle —ulz + vt (Az —b)

if we try to minimize the Lagrangian above by setting the gradient to O,

we get the following constraint at the optimum:

Qr = —(c—u+ A'v)
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Qr=—(c—u+ A'v) (*)
* Now, there are two cases:
(i) ¢ —u+ ATv € col(Q).

® Then, we can use the pseudo-inverse QT of Q.

(ii) ¢ —u+ ATv & col(Q),

®* But in this case, there is no x that satisfies eq. (*) and so there is no

unique minimizer x*.
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Consider again case (ii), where
c—u+ Alv & col(Q),

We can still find a min of L(x, u, v):

1
L(x,u,v) = ExTQx +(c—u+A"v)'x —bTv

e let ¢c—u+ AT’U = 21 + 29, where

21 € CO](Q).
zo € null(Q)), zo # 0.

: , 1
If we take x to be a multiple of —z,, we’ll have: ExTQx =0

But, we can minimize the term (¢ — u + ATv)Tx as much as we like = min L(x,u,v) = —
X
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S0.

Lagrange dual function:

—2(c—u+ ATv)'Q*(c —u+ ATv) — bTv
g(u,v) = if c—u+ Alv 1L null(Q)

—00 otherwise

where Q1 denotes generalized inverse of Q. For any « > 0, v, and
c—u-+ Av L null(Q), g(u,v) is a nontrivial lower bound on f*
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Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to x > 0.
Dual function g(u) is also quadratic in 2 variables, also subject to

u >0

Dual function g(u)
provides a bound on
f* for every u > 0

Largest bound this
gives us: turns out
to be exactly f* ...
coincidence?

More on this later,
via KKT conditions
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Lagrange dual problem

Given primal problem

min f(z)
T
subject to  hij(x) <0,t1=1,...m
li(z)=0,7=1,...r
Our constructed dual function g(u,v) satisfies f* > g(u,v) for all
uw > 0 and v. Hence best lower bound is given by maximizing
g(u,v) over all dual feasible u, v, yielding Lagrange dual problem:

max g(u,v)
W,V

subject to uw >0

Key property, called weak duality: if dual optimal value is g*, then
=9

Note that this always holds (even if primal problem is nonconvex)
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Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

g(u,v) = m$in {f(:,z:) + Z u;h;(x) + Z Vil (m)}
i=1 j=1

r

— max { — f(z) — i u;h;(x) — Z’Ujfj(;(:)}
i=1

j=1

pointwise maximum of convex functions in (u,v)

l.e., g is concave in (u,v), and u > 0 is a convex constraint, hence
dual problem is a concave maximization problem
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Example: nonconvex quartic minimization

Define f(x) = 2* — 502 + 100z (nonconvex), minimize subject to
constraint x > —4.5

Primal Dual

5000
]

-1080

3000

-1120

-1160

-1000 0 1000
|

| | | | | 1 | | | | |
-10 -5 0 S 10 0 20 40 60 80 100

X v

Dual function g can be derived explicitly, via closed-form equation
for roots of a cubic equation
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Form of ¢ is rather complicated:

g(u) = min, {Ff(u) — 50F2(u) 100F?;(u)}3

where for . =1, 2, 3,

/3

_ a 2 2 3)1/2)
= =17 (432(100—@—(432 (100—u)?—4-1200°) )
1

1
(432(100 — u) — (4322(100 — u)2 — 4-1200%) /?)

_100.91/3
100-2 5

and al = 1, as = (—1 +’i\/§)/2, az = (—1 —i\/g)/Q

Without the context of duality it would be difficult to tell whether
or not g Is concave ... but we know It must be! 24



Strong duality

Recall that we always have f* > ¢g* (weak duality). On the other
hand, in some problems we have observed that actually

f‘k — g*
which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and
hi,...hy, are convex, f1,...{, are affine), and there exists at least
one strictly feasible x € R", meaning

hi(z) <0,...hpm(x) <0 and fi(x)=0,...4.(x) =0
then strong duality holds

This is a pretty weak condition. An important refinement: strict
inequalities only need to hold over functions h; that are not affine
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LPs: back to where we started

For linear programs:
e Easy to check that the dual of the dual LP is the primal LP

e Refined version of Slater’'s condition: strong duality holds for
an LP if it is feasible

e Apply same logic to its dual LP: strong duality holds if it is
feasible

e Hence strong duality holds for LPs, except when both primal
and dual are infeasible

(In other words, we nearly always have strong duality for LPs)
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Example

Given y € {—1,1}", X € R"*P, rows z71,...T,, recall the problem:

1. o e
min — + C :
ﬁ,ﬁu,i 2“/8”2 ;53

subject to & >0, 1=1,...n
yi(z{ B+Bo) >1—¢&,i=1,...n

Introducing dual variables v,w > 0, we form the Lagrangian:

T

1 <
1=1

1=1

Z ’wi(l — & — %(T?/@ + /80))

1=1
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T

1 T
L(B, Bo, & v, w) = 5\\[3“% + CZ&-: — Z?Fz‘&i +

1=1 1=1

> wi(l - & — yi(a] B+ Bo))
1=1
1
= =B7B —wTdiag(XB + (C1l—v—w)"&— wly By +17w

2 affine af fine

Since B, By, and & have no interactions, L(.) can be minimized separately on these variables!

* We first minimize on f:
Define X & diag(y)X
V'BL = ( :>,8*’T —WTX= 0=

g =wly,
B* =XTw

r 1 ~
Eﬁ*'T,B -wiXp*+1"w ifw=C1—v, wly=0

— 00 otherwise
. 28

g(v,w) = 4




—ﬁ*’Tﬁ_@ﬁ@ if w=C1—v, wly=0
_g=T

g(v,w) = 7 otherwise
1
— __ __nxT
BB
(0, = —%wT)?)ETw + 17w fw=Cl—v wly=0
Y — 00 otherwise

Thus dual problem, eliminating slack variable v, becomes

1 o
max — inXXTw + 17w

w

subject to 0 <w < C1, wly =0

Check: Slater’s condition is satisfied, and we have strong duality.



Duality gap

Given primal feasible « and dual feasible u, v, the quantity
f(z) —g(u,v)

Is called the duality gap between x and u,v. Note that

flx) =" < flz) —g(u,v)

so if the duality gap is zero, then z is primal optimal (and similarly,
u, v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if
f(x) — g(u,v) <€, then we are guaranteed that f(x) — f* < e

Very useful, especially in conjunction with iterative methods ...
30



Summary

Given a minimization problem
min f(x)
T

subject to  h;(x) <
lj(r) =

we defined the Lagrangian:
L(x,u,v) ) + Zuz

and Lagrange dual function:

1I,...m

)+ > vil(x)
j=1

g(u,v) = min L(x,u,v)

T
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The subsequent dual problem is:
max g(u,v)
U,V

subject to u >0

Important properties:
e Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)
e The primal and dual optimal values, f* and g*, always satisfy
weak duality: f* > g~*

e Slater’s condition: for convex primal, if there is an x such that
hi(x) <0,...hpm(x) <0 and {l1(x) =0,...4:.(x) =0

then strong duality holds: f* = ¢g*. Can be further refined to
strict inequalities over the nonaffine h;, 2 =1,...m

32



Appendix

Some notes from linear algebra

33



Pseudo-inverse

e For a symmetric matrix A € R"*", we can define the pseudo-inverse A" in terms

of its Decomposition.

e we can write A as
A=UDU"
e [f A was invertible, we can directly invert the decomposition above:

A"l =UDUHY =W D vt =UuDWUT

where ;
& 0 .
1 0 é )
D™ =
0O 0 :
1
v 9 .. o
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Pseudo-inverse

e If Ais not invertible, we’re going to see that for &k = rank(A),

flk+1:dk+2:'“:dn:0.

e In this case, we can construct a pseudo-inverse (D7) of D as follows:

"dil 0 0 0 0 O
0 d% 0 0 0 0
0 0 0 0 0
Dt=10 0 = 0 0 0
0 0 0 0 0 0
0 0 0 0 . 0
0 0 0 0 0 0

e And our pseudo-inverse, then, is

At =UuD'U”T



For symmetric matrices, NULL(A) L Col(A)

Col(4) = {v|3Ax: Ax = v}
NULL(A) = {u|Au = 0}

if A= AT = Col(A) L NULL(4),  why?

Letv € Col(A).then: Ax =v

A=AT
Letu € NULL(A).then: Au=0 = ulA" =0 = ul4=0

Now,we have:Ax =v = ulAx=u'v=0. v

We say that for a symmetric matrix A, NULL(A) and Col(A)
are “orthogonal complements”.
36



