Lecture 09 Introduction to Duality

Duality in Linear Programs

Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our convex problem, $B \leq \min_x f(x)$

E.g., consider the following simple LP

$$\min_{x,y} x + y$$
subject to $x + y \ge 2$

$$x, y \ge 0$$

What's a lower bound? Easy, take B=2

But didn't we get "lucky"?

Try again:

$$\begin{aligned} \min_{x,y} & x + 3y \\ \text{subject to} & x + y \geq 2 \\ & x, y \geq 0 \end{aligned}$$

$$x + y \ge 2$$

$$+ 2y \ge 0$$

$$= x + 3y \ge 2$$

Lower bound B=2

More generally:

$$\min_{x,y} px + qy$$
subject to
$$x + y \ge 2$$

$$x, y \ge 0$$

the constraint can be equivalently represented as

$$ax + ay \ge 2a,$$

 $bx \ge 0,$ $a, b, c \ge 0.$
 $cy \ge 0,$

Adding them together, we have that

$$(a+b)x + (a+c)y \ge 2a.$$
$$= p = q$$

$$a + b = p$$

$$a + c = q$$

$$a, b, c \ge 0$$

Lower bound B=2a, for any a,b,c satisfying above

What's the best we can do? Maximize our lower bound over all possible a,b,c:

$\min_{x,y}$	px + qy
subject to	$x + y \ge 2$
	$x, y \ge 0$

$$\max_{a,b,c} 2a$$

subject to
$$a+b=p$$

$$a+c=q$$

$$a,b,c\geq 0$$

Called dual LP

Try another one:

The constraint of the linear program can be equivalently represented as

$$ax \ge 0,$$
 $a \ge 0,$ $b \ge 0.$

3cx + cy = 2c, Note: in the dual problem, c is unconstrained

Adding them together, we have

$$(a+3c)x + (-b+c)y \ge -b + 2c.$$

$$= p = q$$

Duality for general form LP

Given $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $G \in \mathbb{R}^{r \times n}$, $h \in \mathbb{R}^r$:

$$\min_{x} \qquad c^T x \qquad \max_{u,v} \qquad -b^T u - h^T v$$
 subject to
$$Ax = b \qquad \text{subject to} \qquad -A^T u - G^T v = c$$

$$Gx \le h \qquad v \ge 0$$
 Primal LP

Explanation: for any u and $v \geq 0$, and x primal feasible.

$$u^T(Ax-b)+v^T(Gx-h)\leq 0$$
, i.e.,
$$(-A^Tu-G^Tv)^Tx\geq -b^Tu-h^Tv$$

So if $c = -A^T u - G^T v$, we get a bound on primal optimal value

Another perspective on LP duality

for any u and $v \geq 0$, and x primal feasible

$$c^T x \ge c^T x + u^T (Ax - b) + v^T (Gx - h) := L(x, u, v)$$

So if C denotes primal feasible set, f^* primal optimal value, then for any u and $v \ge 0$,

$$f^* \ge \min_{x \in C} L(x, u, v) \ge \min_x L(x, u, v) := g(u, v)$$

In other words, g(u, v) is a lower bound on f^* for any u and $v \ge 0$.

$$g(u,v) = \min_{x} c^{T}x + u^{T}(Ax - b) + v^{T}(Gx - h) =$$

$$\min_{x} \underbrace{(c + A^{T}u + G^{T}v)^{T}x}_{linear\ function\ of\ x} - b^{T}u - h^{T}v$$

$$g(u,v) = \begin{cases} -b^T u - h^T v & \text{if } c = -A^T u - G^T v \\ -\infty & \text{otherwise} \end{cases}$$

This second explanation reproduces the same dual, but is actually completely general and applies to arbitrary optimization problems

(even nonconvex ones)

$$\max_{\substack{u,v\\s.\,t.\,\,v\geq 0}} g(u,v)$$

$$\sup_{\substack{u,v\\s.\,t.\,\,v\geq 0}} -b^Tu-h^Tv$$

$$\sup_{\substack{u,v\\subject\ to\ }} -A^Tu-G^Tv=c$$

$$v\geq 0$$

Lagrangian

Consider general minimization problem

min
$$f(x)$$

subject to $h_i(x) \le 0, i = 1, ... m$
 $\ell_i(x) = 0, j = 1, ... r$

Need not be convex but of course we will pay special attention to convex case

We define the Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

New variables $u \in \mathbb{R}^m, v \in \mathbb{R}^r$, with $u \ge 0$ (implicitly, we define $L(x,u,v) = -\infty$ for u < 0)

Important property: for any $u \geq 0$ and v,

$$f(x) \ge L(x, u, v)$$
 at each feasible x

Why? For feasible x,

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i \underbrace{h_i(x)}_{\leq 0} + \sum_{j=1}^{r} v_j \underbrace{\ell_j(x)}_{=0} \leq f(x)$$

- Solid line is f
- Dashed line is h, hence feasible set $\approx [-0.46, 0.46]$
- Each dotted line shows L(x, u, v) for different choices of $u \ge 0$

(From B & V page 217)

Lagrange dual function

Let C denote primal feasible set, f^* denote primal optimal value. Minimizing L(x, u, v) over all x gives a lower bound:

$$f^{\star} \geq \min_{x \in C} L(x, u, v) \geq \min_{x} L(x, u, v) := g(u, v)$$

We call g(u,v) the Lagrange dual function, and it gives a lower bound on f^* for any $u \geq 0$ and v, called dual feasible u,v

- Dashed horizontal line is f^*
- ullet Dual variable u
- Solid line shows g(u)

(From B & V page 217)

Example: quadratic program

Consider quadratic program:

$$\min_{x} \frac{1}{2}x^{T}Qx + c^{T}x$$

subject to $Ax = b, x \ge 0$

where $Q \succ 0$. Lagrangian:

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + c^{T}x - u^{T}x + v^{T}(Ax - b)$$

$$g(u, v) = \min_{x} L(x, u, v) = \min_{x} \frac{1}{2}x^{T}Qx + (c - u + A^{T}v)^{T}x - b^{T}v$$

To compute the dual function $g(u, v) = \min_{x} L(x, u, v)$, we minimize the Lagrangian above by taking the gradient with respect to x and setting it equal to zero, and we get that

$$x^* = -Q^{-1}(c - u + A^T v)$$

$$g(u,v) = \frac{1}{2}x^{*T}Qx^* + (c - u + A^Tv)^Tx^* - b^Tv$$
$$x^* = -Q^{-1}(c - u + A^Tv)$$

Lagrange dual function:

$$\begin{split} g(u,v) &= \min_x \ L(x,u,v) = \ L(x^*,u,v) \\ &= \frac{1}{2}(c-u+A^Tv)^TQ^{-1}(c-u+A^Tv) - (c-u+A^Tv)^TQ^{-1}(c-u+A^Tv) - b^Tv \\ &= -\frac{1}{2}(c-u+A^Tv)^TQ^{-1}(c-u+A^Tv) - b^Tv \end{split}$$

For any $u \geq 0$ and any v, this is lower a bound on primal optimal value f^{\star}

Same problem

$$\min_{x} \frac{1}{2}x^{T}Qx + c^{T}x$$
subject to $Ax = b, x \ge 0$

but now $Q \succeq 0$. Lagrangian:

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + c^{T}x - u^{T}x + v^{T}(Ax - b)$$

if we try to minimize the Lagrangian above by setting the gradient to 0, we get the following constraint at the optimum:

$$Qx = -(c - u + A^Tv)$$

$$Qx = -(c - u + A^T v) \tag{*}$$

• Now, there are two cases:

(i)
$$c - u + A^T v \in \operatorname{col}(Q)$$
.

• Then, we can use the pseudo-inverse Q^{\dagger} of Q.

(ii)
$$c - u + A^T v \not\in \operatorname{col}(Q)$$
,

• But in this case, there is no x that satisfies eq. (*) and so there is no unique minimizer x^* .

Consider again case (ii), where

$$c - u + A^T v \not\in \operatorname{col}(Q),$$

We can still find a min of L(x, u, v):

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + (c - u + A^{T}v)^{T}x - b^{T}v$$

• let $c - u + A^T v = z_1 + z_2$, where $z_1 \in \operatorname{col}(Q)$,

$$z_2 \in \text{null}(Q), z_2 \neq 0.$$

If we take x to be a multiple of $-z_2$, we'll have: $\frac{1}{2}x^TQx = 0$

But, we can minimize the term $(c - u + A^T v)^T x$ as much as we like $\Rightarrow \min_{x} L(x, u, v) = -\infty$

So,

Lagrange dual function:

$$g(u,v) = \begin{cases} -\frac{1}{2}(c-u+A^Tv)^TQ^+(c-u+A^Tv) - b^Tv \\ & \text{if } c-u+A^Tv \perp \text{null}(Q) \\ -\infty & \text{otherwise} \end{cases}$$

where Q^+ denotes generalized inverse of Q. For any $u \geq 0$, v, and $c - u + A^T v \perp \text{null}(Q)$, g(u, v) is a nontrivial lower bound on f^*

Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to $x \ge 0$. Dual function g(u) is also quadratic in 2 variables, also subject to

Dual function g(u)provides a bound on f^* for every $u \ge 0$

Largest bound this gives us: turns out to be exactly f^* ... coincidence?

More on this later, via KKT conditions

Lagrange dual problem

Given primal problem

$$\min_{x} f(x)$$
subject to $h_i(x) \le 0, i = 1, \dots m$

$$\ell_j(x) = 0, j = 1, \dots r$$

Our constructed dual function g(u,v) satisfies $f^* \geq g(u,v)$ for all $u \geq 0$ and v. Hence best lower bound is given by maximizing g(u,v) over all dual feasible u,v, yielding Lagrange dual problem:

$$\max_{u,v} g(u,v)$$

subject to $u \ge 0$

Key property, called weak duality: if dual optimal value is g^* , then

$$f^{\star} \geq g^{\star}$$

Note that this always holds (even if primal problem is nonconvex)

Another key property: the dual problem is a convex optimization problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

$$g(u,v) = \min_{x} \left\{ f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \right\}$$

$$= -\max_{x} \left\{ -f(x) - \sum_{i=1}^{m} u_i h_i(x) - \sum_{j=1}^{r} v_j \ell_j(x) \right\}$$
pointwise maximum of convex functions in (u,v)

I.e., g is concave in (u, v), and $u \ge 0$ is a convex constraint, hence dual problem is a concave maximization problem

Example: nonconvex quartic minimization

Define $f(x) = x^4 - 50x^2 + 100x$ (nonconvex), minimize subject to constraint $x \ge -4.5$

Dual function g can be derived explicitly, via closed-form equation for roots of a cubic equation

Form of g is rather complicated:

$$g(u) = \min_{i=1,2,3} \left\{ F_i^4(u) - 50F_i^2(u) + 100F_i(u) \right\},$$

where for i = 1, 2, 3,

$$F_{i}(u) = \frac{-a_{i}}{12 \cdot 2^{1/3}} \left(432(100 - u) - \left(432^{2}(100 - u)^{2} - 4 \cdot 1200^{3} \right)^{1/2} \right)^{1/3} -100 \cdot 2^{1/3} \frac{1}{\left(432(100 - u) - \left(432^{2}(100 - u)^{2} - 4 \cdot 1200^{3} \right)^{1/2} \right)^{1/3}},$$

and
$$a_1 = 1$$
, $a_2 = (-1 + i\sqrt{3})/2$, $a_3 = (-1 - i\sqrt{3})/2$

Without the context of duality it would be difficult to tell whether or not g is concave ... but we know it must be!

Strong duality

Recall that we always have $f^* \geq g^*$ (weak duality). On the other hand, in some problems we have observed that actually

$$f^{\star} = g^{\star}$$

which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and $h_1, \ldots h_m$ are convex, $\ell_1, \ldots \ell_r$ are affine), and there exists at least one strictly feasible $x \in \mathbb{R}^n$, meaning

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and $\ell_1(x) = 0, \dots \ell_r(x) = 0$

then strong duality holds

This is a pretty weak condition. An important refinement: strict inequalities only need to hold over functions h_i that are not affine

LPs: back to where we started

For linear programs:

- Easy to check that the dual of the dual LP is the primal LP
- Refined version of Slater's condition: strong duality holds for an LP if it is feasible
- Apply same logic to its dual LP: strong duality holds if it is feasible
- Hence strong duality holds for LPs, except when both primal and dual are infeasible

(In other words, we nearly always have strong duality for LPs)

Example

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$, rows $x_1, \dots x_n$, recall the problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$

subject to $\xi_i \ge 0, \ i = 1, \dots n$
$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

Introducing dual variables $v, w \geq 0$, we form the Lagrangian:

$$L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n v_i \xi_i + \sum_{i=1}^n w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))$$

$$L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n v_i \xi_i + \sum_{i=1}^n w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))$$

$$= \frac{1}{2} \beta^T \beta - w^T diag(y) X \beta + \underbrace{(C1 - v - w)^T}_{affine} \xi - \underbrace{w^T y}_{affine} \beta_0 + 1^T w$$

Since β , β_0 , and ξ have no interactions, L(.) can be minimized separately on these variables!

• We first minimize on β :

Define $\tilde{X} \stackrel{\text{def}}{=} diag(y)X$

$$\nabla_{\beta}L = 0 \Longrightarrow \beta^{*,T} - w^T \tilde{X} = 0 \Longrightarrow \beta^{*,T} = w^T \tilde{X},$$
 $\beta^* = \tilde{X}^T w$

$$g(v,w) = \begin{cases} \frac{1}{2}\beta^{*,T}\beta - w^T\tilde{X}\beta^* + 1^Tw & \text{if } w = C1-v \text{, } w^Ty = 0\\ -\infty & \text{otherwise} \end{cases}$$

$$g(v,w) = \begin{cases} \frac{1}{2}\beta^{*,T}\beta - \underbrace{w^T\widetilde{X}}_{=\beta^{*,T}}\beta^* + 1^Tw \end{cases} \quad \text{if } w = C1 - v, \ w^Ty = 0$$

$$\text{otherwise}$$
$$= -\frac{1}{2}\beta^{*,T}\beta$$

$$g(v,w) = \begin{cases} -\frac{1}{2}w^T\tilde{X}\tilde{X}^Tw + 1^Tw & \text{if } w = C1-v \text{, } w^Ty = 0\\ -\infty & \text{otherwise} \end{cases}$$

Thus dual problem, eliminating slack variable v, becomes

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$

subject to $0 \le w \le C1, \ w^{T}y = 0$

Check: Slater's condition is satisfied, and we have strong duality.

Duality gap

Given primal feasible x and dual feasible u, v, the quantity

$$f(x) - g(u, v)$$

is called the duality gap between x and u, v. Note that

$$f(x) - f^* \le f(x) - g(u, v)$$

so if the duality gap is zero, then x is primal optimal (and similarly, u, v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if $f(x)-g(u,v)\leq \epsilon$, then we are guaranteed that $f(x)-f^\star\leq \epsilon$

Very useful, especially in conjunction with iterative methods ...

Summary

Given a minimization problem

min
$$f(x)$$

subject to $h_i(x) \le 0, i = 1, \dots m$
 $\ell_j(x) = 0, j = 1, \dots r$

we defined the Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

and Lagrange dual function:

$$g(u,v) = \min_{x} L(x,u,v)$$

The subsequent dual problem is:

$$\max_{u,v} g(u,v)$$

subject to $u \ge 0$

Important properties:

- Dual problem is always convex, i.e., g is always concave (even if primal problem is not convex)
- The primal and dual optimal values, f^* and g^* , always satisfy weak duality: $f^* \geq g^*$
- Slater's condition: for convex primal, if there is an x such that

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and $\ell_1(x) = 0, \dots \ell_r(x) = 0$

then strong duality holds: $f^* = g^*$. Can be further refined to strict inequalities over the nonaffine h_i , $i = 1, \ldots m$

<u>Appendix</u>

Some notes from linear algebra

Pseudo-inverse

- For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, we can define the pseudo-inverse A^{\dagger} in terms of its Decomposition.
- we can write A as

$$A = UDU^T$$

• If A was invertible, we can directly invert the decomposition above:

$$A^{-1} = (UDU^T)^{-1} = (U^T)^{-1}D^{-1}U^{-1} = UD^{-1}U^T$$

where

$$D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & \dots & 0\\ 0 & \frac{1}{d_2} & \dots & 0\\ 0 & 0 & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1}{d_n} \end{bmatrix}$$

Pseudo-inverse

• If A is not invertible, we're going to see that for k = rank(A),

$$d_{k+1} = d_{k+2} = \dots = d_n = 0.$$

• In this case, we can construct a pseudo-inverse (D^{\dagger}) of D as follows:

$$D^{\dagger} = \begin{bmatrix} \frac{1}{d_1} & 0 & \dots & 0 & 0 & 0 & 0\\ 0 & \frac{1}{d_2} & \dots & 0 & 0 & 0 & 0\\ 0 & 0 & \ddots & \vdots & 0 & 0 & 0\\ 0 & 0 & \dots & \frac{1}{d_k} & 0 & 0 & 0\\ 0 & 0 & \dots & 0 & 0 & 0 & 0\\ 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{bmatrix}$$

• And our pseudo-inverse, then, is

$$A^{\dagger} = UD^{\dagger}U^T$$

For symmetric matrices, $NULL(A) \perp Col(A)$

$$Col(A) = \{v | \exists x : Ax = v\}$$
 $NULL(A) = \{u | Au = 0\}$
 $if A = A^T \Rightarrow Col(A) \perp NULL(A), \quad \textbf{why}?$
 $Let v \in Col(A).then: \quad Ax = v$
 $Let u \in NULL(A).then: \quad Au = 0 \Rightarrow u^T A^T = 0 \stackrel{A=A^T}{\Longrightarrow} u^T A = 0$
 $Now, we have: Ax = v \Rightarrow u^T Ax = u^T v = 0. \quad \checkmark$

We say that for a symmetric matrix A, NULL(A) and Col(A) are "orthogonal complements".